
Data Warehousing concept

Stay Ahead - Data Warehousing Concepts



Big Bazaar Case Study

Stay Ahead - Data Warehousing Concepts



Big Bazaar Case Study

Semantic 
Layer

DataMart

Stay Ahead - Data Warehousing Concepts



Data Warehousing concepts

Data warehouse

Subject Oriented - A data warehouse is subject oriented because it provides information around a
subject rather than the organization's ongoing operations.
These subjects can be product, customers, suppliers, sales, revenue, etc.
A data warehouse does not focus on the ongoing operations, rather it focuses on modelling and analysis
of data for decision making.

Integrated - A data warehouse is constructed by integrating data from heterogeneous sources such as
relational databases, flat files, etc.
This integration enhances the effective analysis of data.

Time Variant - The data collected in a data warehouse is identified with a particular time period.
The data in a data warehouse provides information from the historical point of view.

Non-volatile - Non-volatile means the previous data is not erased when new data is added to it.
A data warehouse is kept separate from the operational database and therefore frequent changes in
operational database is not reflected in the data warehouse.

Function of data warehouse tools and utilities

Data Extraction - Involves gathering data from multiple heterogeneous sources.
Data Cleaning - Involves finding and correcting the errors in data.
Data Transformation - Involves converting the data from legacy format to warehouse format.
Data Loading - Involves sorting, summarizing, consolidating, checking integrity, and building indices and
partitions.
Refreshing - Involves updating from data sources to warehouse.

Stay Ahead - Data Warehousing Concepts



Slowly Changing Dimension

The "Slowly Changing Dimension" problem is a common one particular to data
warehousing.
In a nutshell, this applies to cases where the attribute for a record varies over time.
We give an example below:

Rahul is a customer with ABC Inc. He first lived in Mumbai. So, the original entry in
the customer lookup table has the following record:

At a later date, he moved to Gurgaon on January, 2003. How should ABC Inc. now
modify its customer table to reflect this change? This is the "Slowly Changing
Dimension" problem.

There are in general three ways to solve this type of problem, and they are
categorized as follows:

Type 1: The new record replaces the original record. No trace of the old record
exists.

Type 2: A new record is added into the customer dimension table. Therefore, the
customer is treated essentially as two people.

Type 3: The original record is modified to reflect the change.

We next take a look at each of the scenarios and how the data model and the data
looks like for each of them. Finally, we compare and contrast among the three
alternatives.

Customer Key Name State

1001 Rahul Mumbai

Type 1

In Type 1 Slowly Changing Dimension, the new information simply overwrites the
original information. In other words, no history is kept.

In our example, recall we originally have the following table:

After Rahul moved from Mumbai, the new information replaces the new record,
and we have the following table:

Customer Key Name State

1001 Rahul Mumbai

Customer Key Name State

1001 Rahul Gurgaon

Advantages:

• This is the easiest way to handle the Slowly Changing Dimension problem, since there is no
need to keep track of the old information.

Disadvantages:

• All history is lost. By applying this methodology, it is not possible to trace back in history.
For example, in this case, the company would not be able to know that Christina lived in Illinois
before.

Type 1 slowly changing dimension should be used when it is not necessary for the data
warehouse to keep track of historical changes.

Data Warehousing concepts

Stay Ahead - Data Warehousing Concepts



Type 2

In Type 2 Slowly Changing Dimension, a new record is added to the table to
represent the new information. Therefore, both the original and the new record will
be present. The new record gets its own primary key.

In our example, recall we originally have the following table:

After Christina moved from Illinois to California, we add the new information as a
new row into the table:

Advantages:
• This allows us to accurately keep all historical information.

Disadvantages:
• This will cause the size of the table to grow fast. In cases where the number of

rows for the table is very high to start with, storage and performance can become
a concern.

• This necessarily complicates the ETL process.

Type 2 slowly changing dimension should be used when it is necessary for the data
warehouse to track historical changes.

Customer Key Name State

1001 Rahul Mumbai

Type 3

In Type 3 Slowly Changing Dimension, there will be two columns to indicate the particular
attribute of interest, one indicating the original value, and one indicating the current
value. There will also be a column that indicates when the current value becomes active.

In our example, recall we originally have the following table:

To accommodate Type 3 Slowly Changing Dimension, we will now have the following
columns: Customer Key, Name, Original State, Current State, Effective Date
After Christina moved from Illinois to California, the original information gets updated,
and we have the following table (assuming the effective date of change is January 15,
2003):

Customer Key Name State

1001 Rahul Mumbai

Customer Key Name State Start Date End Date

1001 Rahul Mumbai 1/1/2013 1/1/2014

1005 Rahul Gurgaon 1/1/2014 31/12/2999 Customer Key Name Original State Current State Effective Date

1001 Rahul Mumbai Gurgaon 15/1/2003

Advantages:
• This does not increase the size of the table, since new information is updated.
• This allows us to keep some part of history.
Disadvantages:
• Type 3 will not be able to keep all history where an attribute is changed more than

once. For example, if Christina later moves to Texas on December 15, 2003, the
California information will be lost.

Type III slowly changing dimension should only be used when it is necessary for the data 
warehouse to track historical changes, and when such changes will only occur for a finite 
number of time.

Data Warehousing concepts

Stay Ahead - Data Warehousing Concepts



Data marts Pro Con

Independent

Easy to implement Not an enterprise wide solution, costly as more DMs are added

Payback value can be almost immediate

Historical data limits

Transformation needed

Logical

No historical data limits

Less physical control over the data

Allows drill downs, trend analysis

No transformation needed

Dependent

All advantages of Logical DM Additional movement of data may be necessary

Allows phyical control over the data Some transformation may needed

Operational Systems

Independent DataMart

Data Warehouse

Data warehouse

Logical 
DataMart

Dependent 
DataMart

Data Warehousing concepts

Data Marts

Stay Ahead - Data Warehousing Concepts



Star Schema
Each dimension in a star schema is represented with only one-dimension table. This
dimension table contains the set of attributes. The following diagram shows the sales
data of a company with respect to the four dimensions, namely time, item, branch, and
location. There is a fact table at the center. It contains the keys to each of four
dimensions. The fact table also contains the attributes, namely dollars sold and units
sold.

Note: Each dimension has only one dimension table and each table holds a set of
attributes.
For example, the location dimension table contains the attribute set {location_key, street,
city, province_or_state,country}. This constraint may cause data redundancy. For
example, "Vancouver" and "Victoria" both the cities are in the Canadian province of
British Columbia. The entries for such cities may cause data redundancy along the
attributes province_or_state and country.

Snowflake Schema
Some dimension tables in the Snowflake schema are normalized. The normalization splits up
the data into additional tables. Unlike Star schema, the dimensions table in a snowflake schema
are normalized. For example, the item dimension table in star schema is normalized and split
into two dimension tables, namely item and supplier table. Now the item dimension table
contains the attributes item_key, item_name, type, brand, and supplier-key. The supplier key is
linked to the supplier dimension table. The supplier dimension table contains the attributes
supplier_key and supplier_type.

Note: Due to normalization in the Snowflake schema, the redundancy is reduced and therefore,
it becomes easy to maintain and the save storage space.

Data Warehousing concepts

Stay Ahead - Data Warehousing Concepts



Data Warehousing concepts

Types of Facts and Dimensions

Facts:
Additive: Additive facts are facts that can be summed up through all of the
dimensions in the fact table. (Sales Amount)

Semi-Additive: Semi-additive facts are facts that can be summed up for some of
the dimensions in the fact table, but not the others (Current Balance)

Non-Additive: Non-additive facts are facts that cannot be summed up for any of
the dimensions present in the fact table (Profit margin)

Fact less fact: A fact less fact table is a fact table that does not have any
measures.

Dimensions:

Junk Dimension: A fact less fact table is a fact table that does not have any
measures.

Conformed Dimension: A conformed dimension is a dimension that has exactly
the same meaning and content when being referred from different fact tables. A
conformed dimension can refer to multiple tables in multiple data marts within
the same organization. For two dimension tables to be considered as conformed,
they must either be identical or one must be a subset of another. There cannot be
any other type of difference between the two tables. For example, two dimension
tables that are exactly the same except for the primary key are not considered
conformed dimensions.

Time Dimension, Location Dimension
Stay Ahead - Data Warehousing Concepts



Normalization Concept – Why required?

Updation Anamoly : If data items are scattered and are not linked to each other properly,
then it could lead to strange situations. For example, when we try to update one data item
having its copies scattered over several places, a few instances get updated properly while a
few others are left with old values. Such instances leave the database in an inconsistent
state.

Insertion Anamoly : We tried to insert data in a record that does not exist at all.

Deletion Anamoly : We tried to delete a record, but parts of it was left undeleted because
of unawareness, the data is also saved somewhere else.

1NF

Data Warehousing concepts

First Normal Form is defined in the definition of relations (tables) itself. This rule defines
that all the attributes in a relation must have atomic domains. The values in an atomic
domain are indivisible units.

Before we learn about the second normal form, we need to understand the
following −
•Prime attribute − An attribute, which is a part of the prime-key, is known as a
prime attribute.
•Non-prime attribute − An attribute, which is not a part of the prime-key, is said to
be a non-prime attribute.
If we follow second normal form, then every non-prime attribute should be fully
functionally dependent on prime key attribute. That is, if X → A holds, then there
should not be any proper subset Y of X, for which Y → A also holds true.

2NF

We see here in Student_Project relation that the prime key attributes are Stu_ID and 
Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name
must be dependent upon both and not on any of the prime key attribute 
individually. But we find that Stu_Name can be identified by Stu_ID and Proj_Name
can be identified by Proj_ID independently. This is called partial dependency, which 
is not allowed in Second Normal Form.

Stay Ahead - Data Warehousing Concepts



3NF

Data Warehousing concepts

For a relation to be in Third Normal Form, it must be in Second Normal form and
the following must satisfy −
•No non-prime attribute is transitively dependent on prime key attribute.
•For any non-trivial functional dependency, X → A, then either −

• X is a superkey or,
• A is prime attribute.

We find that in the above Student_detail relation, Stu_ID is the key and only
prime key attribute. We find that City can be identified by Stu_ID as well as Zip
itself. Neither Zip is a superkey nor is City a prime attribute. Additionally, Stu_ID
→ Zip → City, so there exists transitive dependency.
To bring this relation into third normal form, we break the relation into two
relations as follows

Online Transaction Processing (OLTP) Online Analytical Processing (OLAP)

Source of data Operational data; OLTPs are the 
original source of the data.

Consolidation data; OLAP data comes 
from the various OLTP Databases

Purpose of data To control and run fundamental 
business tasks

To help with planning, problem solving, 
and decisionsupport

What the data Reveals a snapshot of ongoing 
business processes

Multi-dimensional views of various kinds 
of business activities

Queries
Relatively standardized and simple 
queries Returning relatively few 
records

Often complex queries involving 
aggregations

Processing Speed Typically very fast

Depends on the amount of data involved; 
batch data refreshes and complex 
queries may take many hours; query 
speed can be improved by creating 
indexes

Space Requirements Can be relatively small if historical 
data is archived

Larger due to the existence of 
aggregation structures and history data; 
requires more indexes than OLTP

Database Design
Highly normalized with many tables

Typically de-normalized with fewer 
tables; use of star and/or snowflake 
schemas

Stay Ahead - Data Warehousing Concepts



Data Warehousing concepts

Primary and Foreign Key

In Oracle, a primary key is a single field or combination of fields that uniquely defines
a record. None of the fields that are part of the primary key can contain a null value. A
table can have only one primary key.

Note
In Oracle, a primary key can not contain more than 32 columns.
A primary key can be defined in either a CREATE TABLE statement or an ALTER TABLE 
statement.

Create Primary Key using CREATE TABLE command
You can create a primary key in Oracle with the CREATE TABLE statement.

CREATE TABLE table_name
(

column1 datatype null/not null,
column2 datatype null/not null,
...

CONSTRAINT constraint_name PRIMARY KEY (column1, column2, ... column_n)
);

CREATE TABLE supplier
(

supplier_id numeric(10) not null,
supplier_name varchar2(50) not null,
contact_name varchar2(50),
CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

CREATE TABLE supplier
(

supplier_id numeric(10) not null,
supplier_name varchar2(50) not null,
contact_name varchar2(50),
CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name)

);

Create Primary Key using ALTER TABLE command
You can create a primary key in Oracle with the ALTER TABLE statement.

ALTER TABLE table_name
ADD CONSTRAINT constraint_name PRIMARY KEY (column1, column2, ... column_n);

ALTER TABLE supplier
ADD CONSTRAINT supplier_pk PRIMARY KEY (supplier_id);

Stay Ahead - Data Warehousing Concepts



Data Warehousing concepts

Primary and Foreign Key

A foreign key is a way to enforce referential integrity within your Oracle database. A
foreign key means that values in one table must also appear in another table.
The referenced table is called the parent table while the table with the foreign key is called
the child table. The foreign key in the child table will generally reference a primary key in
the parent table.
A foreign key can be defined in either a CREATE TABLE statement or an ALTER TABLE
statement.
Create Primary Key using CREATE TABLE command
CREATE TABLE table_name
(

column1 datatype null/not null,
column2 datatype null/not null,
CONSTRAINT fk_column

FOREIGN KEY (column1, column2, ... column_n)
REFERENCES parent_table (column1, column2, ... column_n)

);

CREATE TABLE supplier
( supplier_id numeric(10) not null,

supplier_name varchar2(50) not null,
contact_name varchar2(50),
CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)

);

CREATE TABLE products
( product_id numeric(10) not null,

supplier_id numeric(10) not null,
CONSTRAINT fk_supplier

FOREIGN KEY (supplier_id)
REFERENCES supplier(supplier_id)

);

CREATE TABLE supplier
( supplier_id numeric(10) not null,

supplier_name varchar2(50) not null,
contact_name varchar2(50),
CONSTRAINT supplier_pk PRIMARY KEY (supplier_id, supplier_name)

);

CREATE TABLE products
( product_id numeric(10) not null,

supplier_id numeric(10) not null,
supplier_name varchar2(50) not null,
CONSTRAINT fk_supplier_comp

FOREIGN KEY (supplier_id, supplier_name)
REFERENCES supplier(supplier_id, supplier_name)

);

Create Foreign Key using ALTER TABLE command

ALTER TABLE table_name
ADD CONSTRAINT constraint_name

FOREIGN KEY (column1, column2, ... column_n)
REFERENCES parent_table (column1, column2, ... column_n);

ALTER TABLE products
ADD CONSTRAINT fk_supplier

FOREIGN KEY (supplier_id)
REFERENCES supplier(supplier_id);

Stay Ahead - Data Warehousing Concepts

https://www.techonthenet.com/oracle/primary_keys.php


Data Warehousing concepts

Primary and Foreign Key

Primary Key Rules
A primary key is required
A primary key value must be unique
The primary key value cannot be NULL
The primary key value should not be changed
The primary key column should not be changed
A primary key may be any number of columns. In oracle the restriction is 32 columns

Foreign Key Rules
Foreign keys are optional
A foreign key value may be non-unique
The foreign key value may be NULL
The foreign key value may be changed
A foreign key may be any number of columns.In oracle the restriction is 32 columns
Each foreign key must exist as a primary key in a related table

Stay Ahead - Data Warehousing Concepts


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

